Week 1 (09/15) : About This Course
Lecture Note : About this course (GSlide, PDF)
Homework : Create your web site
Readings :
機器學習最新案例:Alpha Go 2017
為何機器學習需要數學基礎:The Mathematics of Machine Learning
為何機器學習需要Python : Python、R、Java、 C++ :從業界反饋看機器學習語言趨勢
Week 3 (09/29) : Machine Learning for Classification
Week 2 (09/22) : Introduction to Machine Learning
Lecture Note : Introduction to Machine Learning (GSlide, PDF)
Homework : Python (I)
Readings :
Artificial Intelligence, Machine Learning, and Deep Learning — What the Difference? 2020.
Understanding the differences between AI, machine learning, and deep learning, 2017.
What's the Difference Between Artificial Intelligence, Machine Learning, and Deep Learning? nVidia, 2016.
Chapter 1 Introduction, Introduction to Machine Learning, 2nd, E. Alpaydin, MIT Press, 2010.
A Friendly Introduction to Machine Learning, Udacity 2016. Youtube video 30'52".
Week 3 (09/29) : ML for Classification
Lecture Note : Machine Learning for Pattern Recognition (GSlide, PDF)
Homework : Python (II)
Readings :
Machine Learning for Image Recognition, News 2017.
Machine Learning in Computer Vision, Applied Artificial Intelligence, Vol. 15, pp. 693-705, 2001.
Classification: Probabilistic Generative Model (pdf, video) Machine Learning課程,台大電機系李宏毅教授,2017.
Week 4 (10/06) : ML Problems and Algorithms
Lecture Note : Machine Learning Problems and Algorithms (GSlide, PDF)
Homework : Python (III)
Readings :
Part 1 Overview, Goals, Learning Types, and Algorithms , Machine Learning: An In-Depth, Non-Technical Guide. 2017.
Week 5 (10/13) : ML Problems and Algorithms
Lecture Note : Machine Learning Problems and Algorithms (GSlide, PDF)
Homework : None
Readings :
Thinking about Data, Victor Lavrenko, 2015. Lectures 2 & 3 of the Introductory Applied Machine Learning (IAML) course at the University of Edinburgh (25 部Youtube影片約80分鐘)
Chapter 1 Introduction, Introduction to Machine Learning, 2nd, E. Alpaydin, MIT Press, 2010.
Chapter 1 Introduction, Machine Learning: An Algorithmic Perspective, S. Marsland, Chapman and Hall/CRC, 2009.
Week 6 (10/20) : Supervised Learning
Week 7 (10/27) : Supervised Learning
Lecture Note : Supervised Learning (GSlide, PDF)
Homework : P2 TensorFlow Basics II
Readings :
Chapter 2 Supervised Learning, 2nd, E. Alpaydin, MIT Press, 2010.
Chapters 1-7, Machine Learning: An Algorithmic Perspective, S. Marsland, Chapman and Hall/CRC, 2009.
Part 1 Classification: Chapters 1-7, Machine Learning in Action. Peter Harrington, Manning Publications Co., 2012.
Week 8 (11/03) : Linear Regression
Lecture Note : Linear Regression (GSlide, PDF)
Homework : P3 Doing Math with Tensorflow
Readings :
線性迴歸的運作原理,資料科學・機器・人, 2017。 Source : How linear regression works, Data Science and Robots Blog, 2016. Youtube video.
An Introduction to Gradient Descent and Linear Regression, 2014. (Python)
Chapter 8 Predicting numeric values: regression, Machine Learning in Action. by Peter Harrington, Manning Publications Co., 2012.
Lecture Series: Linear Regression, 3 部Youtube影片 約50分鐘, 2016.
Lesson 1: Simple Linear Regression, STAT 501, Eberly College of Science, The Pennsylvania State University.
Machine Learning,李宏毅,台大電機,2016. Regression: Case Study, pdf, video
Week 9 11/10 : Midterm : NO CLASS
Week 10 (11/17) : Logistic Regression
Lecture Note : Logistic Regression (GSlide, PDF)
Homework : P4 Starting with Machine Learning
Readings :
Chapter 5 Logistic regression, Machine Learning in Action, by Peter Harrington, Manning Publications Co., 2012. (PDF)
Deep Learning Tutorial: Linear Regression, Logistic Regression, Softmax regression.
What is Softmax Regression and How is it Related to Logistic Regression? 2016.
Week 11 (11/24) : Logistic Regression
Lecture Note : Logistic Regression (GSlide, PDF)
Homework : P5 Introducing Neural Networks
Readings :
Chapter 5 Logistic regression, Machine Learning in Action, by Peter Harrington, Manning Publications Co., 2012. (PDF)
Deep Learning Tutorial: Linear Regression, Logistic Regression, Softmax regression.
What is Softmax Regression and How is it Related to Logistic Regression? 2016.
Week 12 (12/01) : Neural Information Processing
Week 13 (12/08) : Backpropagation
Lecture Note : Backpropagation (GSlide, PDF)
Homework : P6 Deep Learning
Readings :
Machine Learning - Neural Networks Tutorial, Paul Tero of Existor Ltd, 2015/8/20
Backpropagation in 5 Minutes, Youtube:00:05:28. 2017/04/02. (中文字幕)
Neural Networks, Youtube video channel (中文字幕)
1. What is Neural Network (19’13")
2. How Neural Networks Learn (21’01")
4. Backpropagation Calculus (10’18")
Backpropagation單元 pdf, video, Machine Learning課程,李宏毅,台大電機,2017.
Chapter 3 The Multi-Layer Perceptron (PDF), Machine Learning: An Algorithmic Perspective, S. Marsland, Chapman and Hall/CRC, 2009.
Neural Networks & The Backpropagation Algorithm, Explained, 2016/03/03.
資料科學・機器・人, 2017:神經網路的運作原理,反向傳播的運作原理。
How Deep Neural Networks Work, B. Rohrer, 2017/03/02. Youtube 24"37'. Blog. How neural networks work.
The Evolution of Gradient Descent, Youtube:00:09:18, 2017/06/02. (此英文的簡短介紹不僅有gradient descent,還有其他深度神經網路常用的方法)
Week 14 (12/15) : Deep Learning
Lecture Note : Deep Learning Introduction (GSlide, PDF)
Homework : Project Announcement
Readings :
Neural network (backpropagation) playground by TensorFlow (1 hidden layer, activation=tanh, batch size=10)
資料科學・機器・人, 2017:解密深度學習,卷積神經網路的運作原理。
Machine Learning and Deep Learning : Differences, 2018/09/28.
Deep Learning for Computer Vision – Introduction to Convolution Neural Networks, 2016.
Machine Learning,李宏毅,台大電機,2016.
Week 15 (12/22) : Convolution Neural Networks
Lecture Note : Convolutional Neural Network (CNN) (GSlide, PDF)
Homework : Project proposal
Readings :
Tutorial: Derivation of Convolutional Neural Network from Fully Connected Network, 2018/07/31.
解析卷积神经网络—深度学习实践手册,2017 (51MB)
How Convolutional Neural Networks Work, B. Rohrer, 2016/08/18. Youtube 26'13". Blog.
Machine Learning,李宏毅,台大電機,2016. Convolutional Neural Network pdf, video
Week 16 (12/29) : Convolution Neural Networks
Lecture Note : Convolutional Neural Network (CNN) (GSlide, PDF)
Homework : None
Readings :
Tutorial: Derivation of Convolutional Neural Network from Fully Connected Network, 2018/07/31.
解析卷积神经网络—深度学习实践手册,2017 (51MB)
How Convolutional Neural Networks Work, B. Rohrer, 2016/08/18. Youtube 26'13". Blog.
Machine Learning,李宏毅,台大電機,2016. Convolutional Neural Network pdf, video